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Abstract. We present a detailed description of an experiment to determine the magnetic moment of an
electron bound in hydrogen-like carbon. This forms a high-accuracy test of bound-state quantum electro-
dynamics. Special emphasis is given to the discussion of systematic uncertainties which limit our present
accuracy. The described experimental setup may also be used for the determination of g factors in other
highly charged ions.

PACS. 32.10.Dk Electric and magnetic moments, polarizability – 06.20.Jr Determination of fundamental
constants – 31.30.Jv Relativistic and quantum electrodynamic effects in atoms and molecules

1 Introduction

1.1 General

The experimental determination of the magnetic moment
(gJ factor) of the bound electron in hydrogen-like ions is
an important test of Quantum Electrodynamics (QED) in
strong Coulomb fields [1–3]. It represents a rather clean
test of pure QED effects because it is not very sensitive to
nuclear structure effects which usually are more difficult to
take into account [4–6]. Precise experimental data on the
gJ factor of the bound electron in hydrogenic systems have
been available until recently only for the hydrogen atom
([7–9] and references therein) and the 4He+-ion [10]. These
results, however, were not sensitive to bound-state QED
effects, which are very small at low values of the nuclear
charge Z. In addition to these measurements, the magnetic
moments of the electrons bound to 207Pb81+ and 209Bi82+-
nuclei were extracted from lifetime measurements of the
excited hyperfine splitting level of the ground state to a
precision of about 10−3 [11–13] which is not sufficient to
observe bound-state QED effects.

Recently we have published the result of an experiment
on the gJ factor of hydrogen-like 12C5+ using a single ion
confined in a Penning ion trap [3]. The precision of a few
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parts in 109 was sufficient to test bound-state QED cor-
rections of order α/π on the 1% level in spite of the rather
low value of Z. It was even possible to derive a new value
for the mass of the electron [14,15] which is more pre-
cise than the current accepted value [16]. An extension
of our method to hydrogen-like or lithium-like ions with
higher Z values would investigate the bound-state QED
contributions even more stringently. In this article we give
a detailed description of our experiment with special em-
phasis of the possible systematic effects which at present
limit our precision.

The paper is organized as follows: after a short intro-
duction on the measurement principle, we describe the
experimental set-up and the basic techniques used for the
experiments (Sect. 2). Section 3 describes measurements
of the ion’s motional frequencies and the detection of in-
duced spin transitions. Section 4 is devoted to a discussion
of the systematic uncertainties.

2 Experimental techniques

2.1 Measurement principle

The gJ factor of an electron is defined in terms of the ratio
of its magnetic moment µ to its angular momentum J

µ = −gJ
e

2me
J, (1)
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where e is the (positive) charge of the electron and me its
mass. The energy difference ∆E between the two orienta-
tions of the electron spin in a magnetic field B = Bzez is

∆E = −µ ·B = gJ
e�

2me
Bz. (2)

Introducing the cyclotron frequency ωe
c = (e/me) × Bz

and the Larmor precession frequency ωL = ∆E/� of the
electron, the gJ factor can be written as

gJ = 2
ωL

ωe
c

· (3)

Thus the gJ factor of the electron can be determined from
a measurement of the Larmor precession frequency and
the cyclotron frequency of the electron.

In our case the electron is bound to a nucleus and
therefore its cyclotron frequency is not directly accessible.
One solution would be to store a free electron and measure
the cyclotron frequency separately. This would, however,
have some drawbacks due to the opposite charge of the
electron compared to the ion: the ion and the electron
cannot be stored at the same time in the same trap and the
measurement of the two frequencies requires a change in
the trapping voltage (e.g. [17]). Contact potentials, patch
effects, and defects in the metal lattice of the trap material
might result in different positions of the potential energy
minima for the ion and the electron, and the two particles
would be located at different regions in the trap. If the
magnetic field is not perfectly homogeneous this then leads
to a different field strength experienced by the ion and the
electron.

To avoid these complications we instead measure the
cyclotron frequency ωc of the ion. Inserting ωc in equa-
tion (3) yields

gJ = 2
ωL

ωc

ωc

ωe
c

· (4)

ωc/ωe
c in the same magnetic field is directly related to the

mass ratio of the two particles. For 12C5+ it was obtained
from a measurement on carbon ions at the University of
Washington [17,18] with a Penning-trap mass spectrome-
ter on which the current CODATA value for the electron
mass is based [16]. Together with the binding energies also
taken from [16] we get

ωc(12C5+)/ωe
c = 0.000 228 627 210 33 (50). (5)

Equation (4) shows that to measure the gJ factor of the
bound electron only the frequency ratio ωL/ωc has to be
determined.

2.2 Our setup

As described in [19,20], our experiments are performed
on a single hydrogen-like ion confined in a Penning trap
with a strong magnetic field (B = 3.8 T) (Fig. 1). The
trap consists of a stack of cylindrical electrodes with an

Fig. 1. Experimental setup.

Fig. 2. Sketch of the trap electrodes.

inner diameter of 7 mm (Fig. 2, Tab. 1). Following a pro-
posal by Gabrielse et al. [21], 5 electrodes form one trap:
between one ring electrode and two symmetrically placed
endcap electrodes we have two correction electrodes. We
apply a negative voltage of typically 2–10 volts to the ring
electrodes while the endcaps are held at ground potential.
Thus for positively charged ions a potential minimum of
a few eV depth along the trap axis (z axis) is formed.
A voltage applied to the correction electrodes serves to
modify the shape of the trapping potential. Choosing a
ratio of 0.877 [21] between the voltages applied to the cor-
rection electrodes and to the ring electrodes, we obtain
a fairly harmonic quadrupole trapping potential near the
center of the ring electrode. Fine tuning of the correction
voltage, as described later, minimizes non-harmonic con-
tributions to the potential.
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Table 1. Electrode dimensions. All the electrodes have an
inner diameter of 7 mm.

Electrode number (see Fig. 2) Length [mm]
1 9.34
2 2.75
3 0.92
4 2.75
5 4.60
6 5.06
7 4.83
8 2.75
9 0.92
10 2.75
11 4.83
12 3.68
13 5.06

As seen in Figure 2, we have two traps of identical ge-
ometry spaced by a 1 cm long separation electrode. The
difference between the two traps is that the ring electrode
of the upper trap is made from nickel while all other elec-
trodes are oxygen-free (OFHC) copper. The whole device
is gold coated to avoid surface charges. The nickel ring in-
troduces an inhomogeneity in the trap’s magnetic field,
needed to analyze the spin direction of the stored ion
(Sect. 3.2). Therefore we call the corresponding trap the
“analysis trap”. We term the trap with the homogeneous
magnetic field the “precision trap”. At the lower end of the
stack of electrodes we have a field emission cathode. Emit-
ted electrons are accelerated to a few hundred electron
volts, pass through the trap arrangement and are reflected
by an additional electrode at the upper end. Coulomb in-
teractions between the electrons cause the beam to expand
and to hit a pellet near the field emission cathode. De-
pending on the electron energy, ions of the pellet material
as well as impurities at different charge states are released
from the surface, drawn into the electron beam and ion-
ized further. Some of them are confined in the precision
trap. In order to achieve long storage times it is essential to
operate the trap in extremely high vacuum since the main
loss mechanism is charge exchange with a neutral parti-
cle. The trap’s housing is kept in thermal contact with a
liquid helium reservoir. Cryopumping removes essentially
all background molecules. From extended measurements
on a cloud of stored 12C5+ ions we found that the storage
time is longer than one year. We derive that the residual
pressure in the trap’s container is below 10−16 mbar. This
assumes a value of σ = 1.35 × 10−14 cm2 for the C5+ to
He charge exchange cross-section [22].

Our magnetic field is provided by a standard supercon-
ducting NMR magnet from Oxford Instruments. It has a
vertically oriented room temperature bore into which the
apparatus is inserted. The apparatus is shown in Figure 1.
It consists of two Dewar vessels, electronics and the vac-
uum chamber containing the trap. Liquid helium cools
the apparatus down to 4 K. Electronic circuits [23] for ion
detection are placed within 20 cm of the traps to avoid

parasitic capacitances of the cables. They consist mainly
out of three high-Q-r.f. amplifiers for ion detection.

2.3 Frequencies in an ideal and a physical Penning trap

The motion of a single ion in the Penning trap is well un-
derstood (e.g. [24]). The solution of the equation of motion
in an ideal quadrupole potential and a superposed homo-
geneous magnetic field yields three harmonic oscillations
with frequencies

ω+ =
ωc

2
+

√
ωc

2

4
− ωz

2

2
(6)

ω− =
ωc

2
−
√

ωc
2

4
− ωz

2

2
(7)

ωz =

√
eU

md2
, (8)

where U is the applied voltage, d the characteristic trap

dimension (defined by d =
√

1
2 (z0

2 + ρ02

2 ) where 2z0 is
the distance between the two endcaps and ρ0 is the ring
radius [21]) and ωc the ion’s cyclotron frequency. ω+,
ωz, ω− refer to the perturbed cyclotron, axial, and mag-
netron oscillations, respectively. For the case of 12C5+ in
a field of 3.8 T, U ≈ 13 V and d = 3 mm, we have
ω+ ≈ 2π× 24 MHz, ωz ≈ 2π× 1 MHz, ω− ≈ 2π× 20 kHz.
The unperturbed cyclotron frequency ωc is not an eigen-
frequency of the ion motion, but the ratio ωL/ωc is re-
quired to determine the g factor (cf. Eq. (4)).

There are several ways to derive ωc from measured
frequencies. We choose the so-called invariance theo-
rem [24,25]

ωc
2 = ω+

2 + ωz
2 + ω−2 , (9)

because it is rather insensitive to trap imperfections, such
as an ellipticity of the trap or a tilt of the trap with respect
to the magnetic field.

The eigenfrequencies of an ion in a non-ideal trap
potential are shifted compared to the values given in
equations (6–8). These shifts have been calculated by sev-
eral authors [24,36–38]. The perturbations arise from a
slightly inhomogeneous magnetic field, anharmonicities in
the electrostatic potential and a small tilt between the
trap axis and the magnetic field direction.

The axially symmetric potential Φ(z, r) can be written
as a series expansion in Legendre polynomials Pl

Φ(z, r) =
∞∑
l=0

Cl

( r

d

)l

Pl

(
z√

r2 + z2

)
· (10)

The leading term is a quadrupole potential (l = 2) which
depends quadratically on the coordinates. Odd terms in
the expansion are very small because of the mirror sym-
metry of the device with respect to the center plane. In
addition, the length of the electrodes is chosen such that
the octupole (C4) and dodecapole (C6) contributions to
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the trapping potential are simultaneously minimized [21].
For the remaining frequency shifts we consider only the
octupole term

∆V = V0C4

z4 − 2z2r2 + 3
8r4

2d4
· (11)

Similarly the magnetic field can be expanded. For our pur-
poses it is sufficient to take only a quadratic component
in the magnetic field (magnetic bottle) into account

∆B = B2

[
(z2 − r2/2)ez − zr

]
. (12)

The change in the magnetron motion is very small and
can be neglected. Then we consider only the axial and
perturbed cyclotron motions. The shift ∆ωz of the axial
frequency is given by [24]

∆ωz

ωz
=

3
2

C4

C2

1
Emax

Ez +
1

mω2
z

B2

B0
E+, (13)

Ez is the total energy in the axial motion, E+ the cor-
responding value in the cyclotron motion. Emax denotes
axial well depth. For constant axial energy, we obtain a
linear dependence of the axial frequency on the cyclotron
energy

E+ = mωz
B0

B2
∆ωz. (14)

This relation is used in our experiment to obtain values
for the cyclotron energies from measurements of axial fre-
quencies.

For the perturbed cyclotron frequency ω+, we get

∆ω+

ω+
= − 1

mω2
+

B2

B0
E+ +

1
mω2

z

B2

B0
Ez . (15)

This shift arises from variations in the magnetic field in
the different space regions encountered by the ion at dif-
ferent energies. Finally the Larmor-precession frequency
is affected by the magnetic field’s inhomogeneity

∆ωL

ωL
= − 1

mω2
+

B2

B0
E+ +

1
mω2

z

B2

B0
Ez . (16)

2.4 Axial detection

Oscillating ions induce image charges in the trap elec-
trodes. For the axial motion, this leads to an oscillating
current I = dQ/dt = (q/d)ż between the trap electrodes,
where q is the charge of the ion and ż its velocity. We con-
nect one of the correction electrodes to a resonant circuit,
while all other electrodes are at a.c. ground potential. Res-
onant circuits are placed very close to the trap and held at
liquid helium temperature. Each circuit consists of a su-
perconducting coil and the trap electrodes as capacitance.
For the analysis trap we achieve a quality factor Q = 2 500
and a corresponding resonance resistance of R = 20 MΩ.
The parameters for the precision trap are Q = 1 000 and

Fig. 3. Axial signals of different ion species stored simultane-
ously. Various charge states of C, O, S and Si can be identified.

R = 10 MΩ. If we tune the trap voltage to such a value
that the ions axial frequency coincides with the resonant
frequency of the circuit, the induced current leads to a
voltage drop across the circuit of a few nV for a single
trapped ion. The induced voltage is inductively coupled
to a field-effect transistor. To avoid carrier freeze-out at
4 K, we use GaAs transistors. Figure 3 shows axial signals
from several ion species and charge states simultaneously
present in the trap. They are sequentially brought into
resonance with the detection circuit by ramping the trap
voltage. For identification of the different species we used
equation (8) which allows to calculate the axial frequen-
cies sufficiently accurate. For signals like those shown in
Figure 3, the axial ion energy is of the order of an eV.

2.5 Radial detection

As in the case of the axial motion, the ion oscillation in
the radial plane at frequency ω+ induces image charges in
the trap electrodes. We use one of the compensation elec-
trodes for detection of ω+. It is split in two segments which
are connected to a resonant circuit. Thus, the induced cur-
rent can be observed. In contrast to the axial resonance,
fine tuning of the ion oscillation frequency with the mag-
netic field is not possible since the required stability of
our magnetic field does not allow any variation. Therefore
we choose a modest Q = 400 for our circuit at 24 MHz,
which is the approximate cyclotron frequency of 12C5+ in
our field of 3.8 tesla. The rather low Q-value makes the
frequency setting not too difficult. Furthermore we added
several GaAs switching capacities to the circuit to allow
changes of the circuit frequency in discrete steps. Figure 4
shows a Fourier transform of the induced current in the
radial circuit. It exhibits the signals from 6 12C5+ ions.
The ions have slightly different frequencies since they are
moving in different orbits in the inhomogeneous magnetic
field. Ions moving faster (having a larger cyclotron or-
bit) produce a stronger signal. Typical ion energies in this
measurement are about 1 keV. In this case the distance
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Fig. 4. Fourier transform of the current induced by the cy-
clotron motion of 6 ions. Due to the magnetic field inhomo-
geneity, ions of lower cyclotron energy have higher cyclotron
frequencies. The ion energies range between 100 eV and 1 keV.

between two ions is of the order of 0.2 mm and energy
exchange between them due to Coulomb interaction can
be neglected.

2.6 Single ion preparation

After ion creation by electron bombardment of the tar-
get surface, ions of different q/m ratios are simultane-
ously confined in the trap as shown in Figure 3. Unwanted
species are removed by selective excitation of their axial
frequency until they hit the trap electrodes and are lost. A
reduction in ion number for the species under investigation
is performed by carefully lowering the potential depth,
while the cyclotron energy of the ions is high (∼ 100 eV).
Due to energy transfer from the cyclotron to the axial
degree of freedom by Coulomb interaction, ions leave the
trap until only one single ion is left. The whole process
from creating an ion cloud to the preparation of a single
12C5+-ion takes less than 5 minutes.

2.7 Ion cooling

2.7.1 Axial cooling

If the ions are continuously kept in resonance with the
outer resonant circuit, thermal equilibrium will be estab-
lished. The high kinetic energy of the ions will be dissi-
pated through the resonant impedance and the ions will
acquire the temperature of the environment. The energy
evolution for a single ion can be described very well by an
exponential E = E0 exp(−γt) (Fig. 5)

γ =
q2

m

R

d2
· (17)

τ

Fig. 5. Resistive cooling of the axial motion of a single ion. The
experimentally observed cooling rate of 132 ms is in agreement
to the value calculated from [26]. The zero line is given by the
noise power with an empty trap.

This is because the current induced by the ion’s motion is
proportional to its velocity and therefore the dissipated
power is proportional to the kinetic energy. Deviation
from the exponential cooling behaviour occurs when the
cooling force is not proportional any more to the kinetic
energy of the ions. A possible reason is that the ion fre-
quency depends on the energy and therefore the resis-
tance of the resonant circuit at the ion frequency changes
during the cooling process. This is particularly impor-
tant for the cooling of the axial motion in our cylindri-
cal trap, because for large amplitudes the motion is no
longer harmonic since higher order multipole components
in the trapping potential become significant. In addition,
the situation becomes more complicated in the case of a
cloud of ions [26], because only the center-of-mass mode is
cooled resistively. The other modes are only cooled due to
their coupling to the center-of-mass mode. This is easily
understood in the case of the so-called breathing mode,
where the center of the charges does not move at all and
therefore to first order no current is induced. However, by
the Coulomb-interaction (ion-ion collisions) or trap anhar-
monicities from space charge potentials, energy transfer
between the modes occurs. Figure 6 shows the cooling of
a cloud of about 30 12C5+-ions with an initial mean kinetic
energy of about 13 eV in a potential well of 50 eV. Due to
the high energy, the axial frequency is shifted downwards
by about 5% so that only the cold ions in this ensemble
are in resonance with the cooling circuit and are cooled.
This results in the initial fast decrease of the total noise
power in Figure 6. This time constant is the same as mea-
sured for ion clouds with low kinetic energy for which the
trap anharmonicity can be neglected. For large times the
cooling process is dominated by the energy flow from
the non-center-of-mass modes to the center-of-mass mode.
We measure a time constant of 5 s after the cloud has set-
tled down.
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Fig. 6. Resistive cooling of the axial motion of an ion cloud.
The time constant of the exponential fit to the tail is 5 s. The
zero line is given by the noise power with an empty trap.

Fig. 7. Resistive cooling of the cyclotron motion of a single
ion. While the ion’s energy is decreased the cyclotron frequency
increases due to the inhomogeneity of the magnetic field. For
low ion energies the magnetic field depends on the square of
the coordinates (solid line).

2.7.2 Cyclotron cooling

For the cyclotron mode the cooling principle is the same
as for the axial mode. The Q-value of the resonant circuit
is chosen to be smaller than in the case of the axial cir-
cuit and consequently the time constant is larger (100 s).
Along with the decrease of the cyclotron energy we observe
a shift of the cyclotron frequency with the same time con-
stant (Fig. 7) due to the inhomogeneity of the magnetic
field. Fourth and higher order contributions to the mag-
netic field lead to the deviation from the exponential.

2.7.3 Magnetron cooling

In contrast to the axial and cyclotron mode, reducing the
energy of the metastable magnetron mode would lead to
an increase of the magnetron orbit and finally to the loss

of the ion. Therefore, no resonant circuit at this frequency
is attached to the trap. To reduce the magnetron radius we
couple the magnetron oscillation to the axial mode by an
r.f. field at the sum frequency of both oscillations. This so-
called sideband-coupling technique is of great importance
for our experiment and we will discuss it in more detail in
the following section.

2.8 Sideband coupling and avoided crossing

2.8.1 Sideband coupling

Sideband coupling (see [24,27,28]) relies on the fact that
an ion with eigenfrequencies ω1 and ω2 can absorb photons
with frequencies ω1±ω2. Coupling two modes in a Penning
trap by an r.f.-field at the difference frequency ω1 − ω2

leads to a quantum-number exchange between these two
modes. The absorption of an r.f.-photon at this frequency
results in a loss of one quantum number in one mode and
a gain in the other one. Also, stimulated emission can take
place, with the opposite result. When one of the motions
is cooled resistively coherence is lost and the quantum
numbers for both modes tend to equalize. Expressed in
terms of the energies E1 and E2 we obtain [24]

|E2| =
ω2

ω1
|E1|. (18)

If the magnetron motion is involved, the situation is some-
what changed because it has to be described by an in-
verted harmonic oscillator, introducing a minus sign in
the total magnetron energy. Therefore to reduce the mag-
netron orbit, we have to apply an r.f.-field to one segment
of the split correction electrode not at the lower but at
the upper axial magnetron sideband ωz + ω−.

2.8.2 Avoided crossing

The absorption of the sideband photons is coherent. If we
start with quantum number zero in mode 1, we will arrive
in a time given by half of the inverse Rabi frequency Ω at
quantum number zero in mode 2, and the initial quantum
number of mode 2 in mode 1. Thus the amplitudes of both
modes are modulated by cos(Ωt+φ) with a phase-shift of
∆φ = π/2 between the modes. The time evolution of the
axial motion can now be written as

z(t) = cos(Ωt) sin(ωzt)

=
1
2

[sin ((ωz + Ω)t) + sin ((ωz − Ω)t)] . (19)

Now two components of the axial frequency show up. This
is experimentally verified and shown in Figure 8 for r.f.-
coupling of the axial and the magnetron mode at the
sideband ωz + ω−. The splitting of the two resonances
is proportional to the energy exchange rate Ω−1 between
the two modes. A classical treatment has been given by
Cornell et al. in reference [27], quantum mechanically it
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Fig. 8. Fourier spectrum of the axial motion without (up-
per curve) and with (lower curve) sideband excitation at the
frequency ωz + ω−. The splitting of the axial frequency is not
symmetric due to a slight detuning of the sideband drive from
the resonance (Fig. 9).

Fig. 9. Avoided crossing of axial frequency due to its coupling
to the magnetron mode. The fits are according to equa-
tion (20).

has been discussed in [28]. The situation is more compli-
cated if the coupling sideband is detuned by some amount
δ. We are not going into the details here but refer to [27].
The position of the two frequency components ω + ε1,2 of
one mode is given by [27]

ε1,2 = − δ

2
±
√

δ2 + |V |2, (20)

where V is the amplitude of the coupling-r.f.-field. Fig-
ure 9 shows a good agreement of this formula with our
measurement.

Fig. 10. Autocorrelation of the ion’s cyclotron energy. The
ion was held in thermal equilibrium at 4.2 K for 2 days.

2.9 Ion temperature

In the ideal case the ion temperature will be equal to the
temperature of the environment for all degrees of freedom.
However, electronic perturbations may heat the ion. Since
our final accuracy in the gJ factor measurement depends
on corrections which arise from a finite ion temperature,
it is essential to determine experimentally the actual ion
temperature in the axial as well as in the radial mode.

To measure the temperature of the cyclotron mode of
a single ion, we monitored the axial frequency in the anal-
ysis trap over a period of 2 days, performing a measure-
ment every 10 s. The magnetic field inhomogeneity in the
analysis trap, caused by the nickel ring electrode, shifts
the axial frequency when the cyclotron energy changes
due to thermal fluctuations (see the detailed discussion in
Sect. 4 and Eq. (14)). The shift amounts to 5 Hz per meV
of cyclotron energy as calculated from the measured mag-
netic field inhomogeneity. When we compile a histogram of
the cyclotron energies we obtain an exponential decrease
of the probability of a certain energy with increasing en-
ergy. The corresponding temperature from a Boltzmann
distribution fit gives 4.90 (8) K. The slight disagreement
with the expected temperature arises from additional
variations of the axial frequency by fluctuations in the
trapping voltage which are of the order of a few ppm. A
calculation of the autocorrelation function of the energy
fluctuation (Fig. 10) gives a time constant in the analysis
trap of 5.40 (7) min which is in excellent agreement with
the measured cooling time constant of 5.42 (28) min.

A measurement of the axial temperature of a single ion
is more difficult. We prepare the ion in the precision trap.
The axial energy is brought into equilibrium with the cy-
clotron energy by coupling the two modes with a r.f-drive
at ω+ − ωz applied to one segment of the split correc-
tion electrode for a time of 10 s. This is about a factor
of 100 longer than the energy exchange time as derived
from the splitting of the two axial dips (see Sect. 2.8.1,
cf. Fig. 8). This ensures that the two modes have the
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Fig. 11. Measured axial frequencies in the analysis trap af-
ter sideband coupling of the axial and cyclotron mode in the
precision trap. The measurement yields the ion’s axial energy
distribution in the precision trap (upper scale). The exponen-
tial least-squares fit (solid line) corresponds to a temperature
of 61 ± 7 K.

same quantum number and we have E+ = (ω+/ωz) × Ez

(Eq. (18)). Then the ion is transferred to the analysis
trap where the cyclotron energy is determined as de-
scribed above. Plotting the axial energies, we obtain Fig-
ure 11. The measured temperature is 61 (7) K. This is
much higher than the ambient temperature of 4.2 K at
which the cooling circuit is maintained. This means that
in addition to the Johnson noise of our circuit, another
noise source is present which has not been identified so far.
An assumption that the attached transistor would repre-
sent this source of additional noise seems not to be correct
when we switched off the transistor during the transfer of
axial energy to the cyclotron mode it had no effect on the
observed temperature.

3 Measurements

3.1 Measurement of eigenfrequencies

The unperturbed cyclotron frequency ωc as required for
determining ωL/ωc is taken from equation (9) [24,25]

ω2
c = ω2

+ + ω2
z + ω2

−. (21)

This equation is accurate even in the presence of electric-
field imperfections. All three motional eigenfrequencies of
the ion have to be measured precisely. Because of the hi-
erarchy of frequencies

ω+ > ωz > ω−, (22)

the required precision, however, differs. Aiming to a frac-
tional uncertainty of 10−9 in the unperturbed cyclotron
frequency, the perturbed cyclotron frequency at 24 MHz

ar
b.

Fig. 12. Fourier transform of the current induced by the
cyclotron motion of a single ion. The full line width ∆ω+/ω+

is 10−9. The ion’s cyclotron energy was 2 eV.

has to be determined to 10−9 corresponding to an abso-
lute accuracy of 24 mHz. For the 930 kHz axial frequency
an accuracy of 7 × 10−7 (0.62 Hz) is necessary while for
the 18 kHz magnetron frequency 2×10−3 (32 Hz) is suffi-
cient. Since the requirement for the magnetron frequency
is rather low, it is determined only once per month whereas
the cyclotron and the axial frequencies are measured in
each spin-resonance detection cycle.

3.1.1 Perturbed cyclotron frequency

As described in Section 2.5, the perturbed cyclotron fre-
quency ω+ is measured directly by performing a Fourier
transform of the current induced between the two seg-
ments of the split correction electrode of the precision
trap. A high-resolution Fourier transform, as in Figure 12,
shows that the full linewidth is on the order of 25 mHz in
a total frequency of 24 MHz, corresponding to a fractional
width of 10−9. The line can be fitted to a Lorentzian line-
shape and the statistical uncertainty of the center is less
than 10−10. The width of the resonance is in agreement
with expectations from the residual magnetic field inho-
mogeneity in the precision trap (see Fig. 13 and Sect. 4).

3.1.2 Axial frequency

The axial frequency is measured while the ion is in ther-
mal equilibrium with the corresponding resonant circuit.
The ion signal is observed as a minimum (“dip”) in the
Fourier transform of the Johnson (thermal) noise of the
circuit (Fig. 14). This can be understood by solving
the ion’s equation of motion under the influence of the
fluctuating noise voltage at the trap electrodes as per-
formed by Wineland et al. [26]. Here, we give a short in-
tuitive argument. Consider the ion as a driven harmonic
oscillator. Any voltage at the trap electrode having the
same frequency as the ion oscillation will drive the ion
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Fig. 13. Histogram of the width of the cyclotron resonances
in the precision trap, determined from Lorentzian fits. The
average width of 34.8 mHz is consistent with the expected one
of 35 mHz derived from the measured magnetic inhomogeneity
and the axial temperature in the precision trap. Large widths
are exponentially less probable, because they correspond to
high axial kinetic energies of the ion.

Fig. 14. Axial frequency of a single ion in the analysis trap.
It shows up as a minimum in the Fourier transformed noise
voltage across the axial tank circuit. The full width of the
resonance is 2 Hz. The data acquisition time was 60 s.

strongly. This results in a high a.c. current with opposite
phase, shortening the external voltage at this frequency.
Consequently the total Johnson noise amplitude at the
ion oscillation frequency is reduced. The ion’s kinetic en-
ergy is not increased through this process compared to the
thermal energy of the environment but concentrated in a
narrow band. The width of the observed noise minimum
is given by the coupling strength γ (Eq. (17)). It has a
value of 1/230 ms−1 in our precision trap (Q = 1 000 at
ωz = 2π × 930 kHz) and 1/80 ms−1 in the analysis trap
(Q = 2 500 at ωz = 2π × 360 kHz). The single-ion dip
(Fig. 14) has a full width at half maximum of of 2 Hz and
0.7 Hz in the analysis and precision trap, respectively. Its
center can be determined to about 5% of the width after

Fig. 15. Increase in the signal-to-noise ratio by exciting the
ion motion. The depth of the dip (signal) scales almost linearly
with the total voltage across the detection circuit (excitation
and Johnson noise), where as the noise depends on the Johnson
amplitude only.

averaging for 120 s, which is sufficiently accurate. As will
be shown below, a measurement of the axial frequency to
a few 100 mHz in the analysis trap is also required in or-
der to detect spin-flip transitions. The determination of
the axial frequency in the manner described above takes
about 4 minutes during which all parameters have to be
kept constant. We reduced this time to less than 60 s by
exciting the resonant circuit with a voltage rectangular in
frequency space (i.e., in a frequency interval of 100 Hz
around the center all frequencies of the voltage have the
same amplitude). Figure 15 shows that the noise at the
circuit stays constant while the total voltage increases.
The signal from the ion is increased by a factor 4 in this
example.

3.1.3 Magnetron frequency

The magnetron frequency can not be measured directly.
It can be determined, however, by sideband coupling to
the axial motion. If we excite the ion by a r.f-drive on
one segment of the correction electrode at the difference
between the axial and the magnetron frequency (ωz−ω−),
the axial motion is heated. This shows up as an easily
detectable peak in the Fourier spectrum (Fig. 16).

3.1.4 Optimization of the trap

The eigenfrequencies of the ion in a trap will be shifted if
the trapping potential is not perfectly harmonic but con-
tains higher order components (see Sect. 4). In our cylin-
drical trap, we approximate a quadrupole-type electrical
field by tuning the ratio of the voltages at the correction
electrodes and the ring electrode. We use two different
methods to find the optimum value for this ratio: in the
first method we excite the axial oscillation by applying
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Fig. 16. Measurement of the magnetron frequency. Displayed
is the Johnson noise of the axial resonant circuit at the ion’s
axial frequency. Excitation at the sideband ωz − ω− leads to
a heating of the axial motion and a corresponding increase in
the noise voltage.

Fig. 17. Determination of the optimum tuning ratio from
axial frequency shifts, when the ion’s axial temperature is ex-
cited from 150 K to 1 500 K. The residual octupole part at a
tuning ratio of 0.88029 of the trapping potential has a strength
of C4 < 10−5.

a voltage rectangular in frequency space. If the trapping
potential is anharmonic, the axial frequency is shifted ei-
ther to lower or to higher values depending on the sign
of the higher-order components in the potential. These
components can be changed by applying different volt-
ages to the correction electrodes. Defining a tuning ratio
as the ratio between the correction voltage an the trap-
ping voltage, we find the optimal tuning ratio when the
axial frequency is not shifted after excitation (Fig. 17).
Another possibility to monitor the quality of the trapping
potential is to measure the depth of the dip in the power
spectrum of the axial tank circuit from a stored single
ion. It has its highest value when the trap is harmonic.
Both methods give the same optimum tuning ratio within
their error margins. We arrive at a value for the octupole
term C4 of less than 10−5. Due to the special electrode

Fig. 18. Axial frequency measurements for spin up and spin
down. The axial frequency differs for the two spin direction by
about 0.7 Hz.

geometry [21], the dodecapole term C6 amounts then also
to only 10−3. These small higher-order contributions shift
the cyclotron frequency as calculated from equation (21)
by less than 10−10. Other higher order terms in the po-
tential need not to be considered.

3.2 Spin flip transitions

Transitions of the spin direction of the bound electron can
be induced by a microwave field. At our magnetic field
of 3.8 T the resonance frequency (Larmor precession fre-
quency) is about 104 GHz. It is determined by recording
the spin-flip rate of the electron versus the frequency of
the exciting field. The spin-flip transitions are observed
using the technique developed in the electron g − 2 ex-
periment by Dehmelt et al. [29] and first demonstrated
for atomic ions in [19]. A quadratic inhomogeneity in the
magnetic field (magnetic bottle) produced by a ferromag-
netic ring electrode in the analysis trap (see Fig. 2) leads
to a quadratic dependence of the magnetic energy Emag

on the z-coordinate (cf. Eq. (12))

Emag = −µ · B = −µz(B0 + B2z
2 + · · · ). (23)

The ion’s axial oscillation frequency is given by the sum
of the electric potential and the magnetic potential. Both
potentials depend on the square of the coordinates and
thus the total potential is harmonic. Because of the dif-
ferent sign of the magnetic potential for the two spin di-
rections, the axial frequency is slightly different for spin
up and spin down (continuous Stern-Gerlach effect) [30].
The resulting difference of the axial frequency of 12C5+

at our measured value of the quadratic magnetic field
component (B2 = 10 mT/mm2) is calculated to amount
to about 0.7 Hz at a total axial frequency of 360 kHz
which is experimentally verified (Fig. 18). If we vary the
microwave-field frequency around the expected Larmor
frequency in the analysis trap and record the number of
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spin flips per unit time we obtain a resonance curve. The
lineshape, however, is broadened and made asymmetric by
the inhomogeneity of the magnetic field at this position.
Using a proper line shape formula the resonance frequency
was determined to a precision of about 10−6 [19].

A significant improvement has been obtained by intro-
ducing a double-trap technique. We transfer the ion to the
precision trap where the spin-flip transitions are induced
in the homogeneous part of the magnetic field. Then we
transfer it back to the analysis trap to determine the spin
direction. This reduces the width of the resonance by 3 or-
ders of magnitude.

3.2.1 Transfer of the ion

The transfer between the two traps is achieved by chang-
ing the voltages at the different electrodes continuously
in such a way that a potential minimum is maintained.
The variation of the minimum position in time is slow
compared to the period of the axial frequency. It takes
about 1 s. A single ion and ion clouds could be transferred
more than 10 000 times between the precision and analy-
sis trap without any ion loss. For a single ion we observed
no increase of the magnetron radius after 1 000 trans-
fers, whereas for ion clouds some magnetron heating takes
place. This is due to ion-ion interaction during the trans-
port.

3.2.2 Measurement cycle

For the measurement of the frequency ratio ωL/ωc we use
the following procedure (see Fig. 19): after the prepa-
ration of a single ion, all motional modes are cooled to
the minimum obtainable temperatures. Then we optimize
the trapping potential of both traps as explained in Sec-
tion 3.1.4. This is necessary because after each creation
of ions the surface charges on the electrodes may change
slightly.

We then start the measurement cycle: at first the ion’s
spin direction is determined in the analysis trap by in-
ducing spin flips and observing the corresponding change
of 0.7 Hz in the axial frequency. Then the ion is trans-
ferred to the precision trap. Here, again spin flips are in-
duced by a microwave field. Simultaneously, the cyclotron
frequency is recorded. Finally the ion is transferred back
to the analysis trap where we determine the spin direc-
tion again. The directions of the spin before and after the
transfer reveals whether a spin flip took place in the preci-
sion trap (see Fig. 20). A single measurement of the axial
frequency in the analysis trap, however, is not sufficient to
determine the spin direction without any doubt because
the axial frequency might have changed not only by a
spin flip but also by instabilities in the applied voltage or
a change in cyclotron energy. Inducing a sequence of two
spin flips reduces any ambiguity substantially.

Parallel to the attempt to induce a spin-flip transi-
tion we measure simultaneously the cyclotron frequency

Fig. 19. Measurement cycle.

of the ion (Eq. (4)). As a first step we excite the per-
turbed cyclotron motion to an energy of 5–20 eV (typical
parameters of the ion motion are compiled in Tab. 2). This
induces a current large enough to be measured. We then
let the ion’s cyclotron motion cool down resistively to en-
ergies E+ between 1–5 eV, at which we take the data.
The cooling process is monitored by the strength of the
induced current and we stop it at the desired energy by
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Fig. 20. Determination of the spin direction. In the analysis
trap, the direction of the spin is determined by irradiating the
ion with microwaves and measuring the axial frequency subse-
quently. A frequency change of 0.7 Hz downwards indicates a
spin transition from up to down, and vice versa.

Table 2. Typical amplitude r, frequency ω and energy E of
the ion motion during the measurements.

r [µm] ω [kHz] E [meV]

Cyclotron 46 2π× 24 075 3 000

Axial 50 2π× 929 5

Magnetron 93 2π× 18 –10

switching off the cooling circuit. We then measure the ax-
ial frequency (Sect. 3.1.2). This is necessary because we
have to calculate the unperturbed cyclotron frequency ωc

from equation (21). During the measurements of the ax-
ial frequency, the cyclotron resonant circuit is detuned
by changing its capacitance by GaAs-switches, so that
the cyclotron energy stays constant leaving the axial fre-
quency stable as well. We vary ωmw/ωc by changing the
104 GHz microwave frequency ωmw around the expected
value for ωL. While the ion is irradiated by microwaves,
we simultaneously measure the perturbed cyclotron fre-
quency. This takes 80 s, corresponding to a Fourier limit
of 12 mHz. We then repeat the measurement of the axial
frequency and cool the ion’s cyclotron motion by coupling
it to the axial motion employing an r.f.-field at ω+ − ωz

(similar to the sideband-coupling technique described in
Sect. 2.8.1). Then the axial frequency is measured a third
time. The shift ∆ωz of the axial frequency between the av-
erage of the first two measurements and the third one is a
measure for the cyclotron energy at which the ion has been
irradiated by microwaves (cf. Eqs. (14, 38)). This know-
ledge is required to account for a small shift of the value of
ωL/ωc depending on the cyclotron energy. It mainly arises
from a residual inhomogeneity of the magnetic field in the
precision trap.

Finally, the ion is transferred back to the analysis trap
where the direction of the spin is determined again in the
same way as described above. Comparing the spin direc-

Fig. 21. ωL/ωc resonance measured in the precision trap.
Plotted is the spin-flip probability versus the ratio of the mi-
crowave and the cyclotron frequency ωL/ωc, corrected for the
cyclotron energy E+ according to equation (45) by −2.4 ×
10−6E+/eV (cf. Fig. 29). The measurement includes 1 000 at-
tempts to induce spin flips. The total measurement time was
one month. The solid line is a fit to a Gaussian. The dashed
line is a fit to a convolution of a Gaussian and a Boltzmann
distribution (Eq. (34)). Both models take saturation effects
into account. The error margins are deduced by assuming a
binomial distribution of the spin-flip probability.

tion before and after the transfer to the precision trap al-
lows now to decide whether in the precision trap a spin-flip
has taken place or not (Fig. 20). More precisely we dis-
tinguish between an odd and even number (including 0)
of spin-flips. In case of too high amplitude of the induc-
ing microwave field the spins are in arbitrary direction
after transfer to the analysis trap. We keep the amplitude
to such a value that the maximum spin-flip probability
is around 30% to avoid saturation by multiple spin-flips.
From the sideband cooling of the cyclotron energy in the
precision trap, we get a thermal distribution of the cy-
clotron energy with a mean value of 5 meV (see Sect. 2.9
and Fig. 11). In the analysis trap this leads to a spread
of the axial frequency of about 200 Hz (see Fig. 11). This
overshadows by far the effect of a spin flip and makes it
necessary to change the storage potential each time so that
the ion’s axial frequency matches the resonance of the cir-
cuit. The measurement cycle is fully automated and takes
20–30 minutes for one single event.

The resonance obtained when plotting the spin-flip
probability versus the applied frequency is much more
symmetric than resonances obtained in analysis trap
alone. The fractional width of these resonances is 2×10−8

and their center can be determined to a precision of better
than 10−9 (see Fig. 21).

4 Systematic uncertainties

Apart from statistical uncertainties, the final accuracy is
determined by the extent to which possible systematical
errors can be accounted for. Table 3 lists the effects which
we have considered and which we are going to discuss
in the following sections. The largest contribution comes
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Table 3. Systematic uncertainties of ωL/ωc which are consid-
ered. The corresponding sections are indicated in parentheses.
All uncertainties are given in relative units.

asymmetry of resonance (4.1.2) 2 × 10−10

measurement of cyclotron energy (4.2) 2 × 10−10

electric field imperfections (4.4) 1 × 10−10

cavity-QED shifts (4.5) ≈ 10−13

interaction with image charges (4.5) 3 × 10−11

relativistic corrections (4.6) 1 × 10−12

magnetron energy (4.7) 1 × 10−11

shift by standing microwave field (4.7) < 10−14

stability of quartz oscillators (4.7) 1 × 10−10

grounding of apparatus (4.7) 4 × 10−11

saturation of spin-flip transition 5 × 10−12

spectral purity of microwaves 5 × 10−13

damping of ion motion ≈ 10−20

total (quadrature sum) 3 × 10−10

Table 4. Corrections which are included in the final evalua-
tion of the experimental value for ωL/ωc.

experimental value 4376.210 500 2

interaction with image charges (4.5) −0.000 001 2

shift due to grounding (4.7) −0.000 000 3

cyclotron energy measurement (4.2) +0.000 000 3

final experimental value 4376.210 499 0

from our understanding of the resonance line shape which
is affected by a small residual inhomogeneity of the mag-
netic field in the precision trap. We are also going to dis-
cuss some corrections that we have to apply to our final
experimental value (see Tab. 4).

4.1 Lineshape

4.1.1 Basic lineshapes

In a perfectly homogeneous magnetic field, the cy-
clotron and Larmor resonances would be described by a
Lorentzian lineshape. The slight inhomogeneity of the field
in the precision trap caused by the residual influence of
the nickel ring in the analysis trap, 27 mm apart, leads to
distortions. The shape of both resonances in an inhomo-
geneous magnetic field of the form given by equation (12)
was calculated by Brown [31,32].

In our experiment for each test of a certain ratio
of ωmw/ωc, the influence of the cyclotron energy can be
neglected because the ion is decoupled from the environ-
ment during the measurement. The axial mode, however,
is strongly coupled to the resonant circuit with a time con-
stant of 1/γ = 233 ms. The basic broadening process is
the dependence of the average field on the thermally fluc-
tuating axial energy (Eqs. (15, 16)). For this reason, the
axial energy distribution should show up in the lineshape.

∆ν

0,1 0,2 0,3 0,4

Fig. 22. Theoretical lineshape of the Larmor and the cy-
clotron resonances calculated from equation (26). The shape
of the Larmor resonance reflects the energy distribution of the
axial mode.

This becomes significant only when the frequency fluctu-
ations (∆ωL or ∆ω+) due to the axial energy fluctuations
are much larger than the time constant γ (Eq. (17)) for
axial energy change. For our experiment with 〈Ez〉 = 70 K
and a magnetic field of 4 T, this condition holds only for
the Larmor frequency at 104 GHz (∆ωL ≈ 80γ). In this
case the resonance shape χ(ω′

L) is given by a Boltzman-
nian exponential

χ(ω′
L) =

θ(ω′
L − ωL0)
∆ω

exp
(
−ω′

L − ωL0

∆ωL

)
· (24)

Here ωL0 denotes the Larmor frequency for vanishing axial
energy. The calculated half width of the resonance for our
set of parameters is ∆ωL/ωL0 = 3 × 10−9.

For the cyclotron motion at 24 MHz we have at
〈Ez〉 = 70 K, ∆ω+ ≈ 1/5 γ, and the frequency fluctua-
tions ∆ω+ are smaller than the energy-exchange time con-
stant. In this case, the lineshape can be approximated by
a Lorentzian which arises from motional averaging [33–35]

χ(ω′
+) =

∆ω+
′2/πγ

(ω′
+ − ω+0 − ∆ω+)2 + (∆ω+

′2/γ)2
· (25)

The full half width of this resonance line (Fig. 22) is
∆ωc/ωc0 = 1.5 × 10−9. The fact that the cyclotron res-
onance is narrower than the Larmor resonance is under-
standable since for a low frequency it takes longer until
the frequency is defined with the same relative accuracy
as for a higher one. In our case the ion does not spend suf-
ficient time at high axial energies (corresponding to high
cyclotron frequencies) to contribute to the wings of the
spectral line. In Figure 22 we display the two basic line-
shapes for our experimental parameters.

In the intermediate region, ∆ω+ ≈ γ, which is the
case for axial temperatures of about 360 K, one has to
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Fig. 23. Cyclotron resonance for an axial temperature of
350 K. The fit function (dashed line), using amplitude, reso-
nant frequency and background as free parameters, is given by
equation (26).

use a power series as developed by Brown to describe the
lineshape [31,32]:

χ(ω) =
4
π

Re
γ′γ

(γ′ + γ)2

∞∑
n=0

(γ′ − γ)2n(γ′ − γ)−2n

(n + 1
2 )γ′ − 1

2γ − i(ω − ω0)
·

(26)

The assumptions made by Brown were a Boltzmannian
distribution of the axial energy with the coupling constant
γ to the thermal bath and a magnetic field perturbation
described by equation (12). γ′ is defined by

γ′ =
√

γ2 + 4iγ∆ω. (27)

∆ω can be interpreted as the line shift which occurs when
the ion has an axial energy equal to that of the energy’s
expectation value.

Equations (24, 25) are obtained in the limits ∆ω �
γ and ∆ω � γ, respectively. Figure 23 indicates that
Brown’s model gives a correct description of the lineshape
at γ ≈ ∆ω. In the fit we have assumed an ion temperature
of 350 K, which was derived from a separate measurement
(see Sect. 2.9).

4.1.2 Lineshape of the ωL/ωc resonance

We obtain an “ωL/ωc resonance” by plotting the spin-flip
probability versus the ratio ωmw/ωc. The theoretical line-
shape for this resonance can be derived using the results
from the Larmor- and cyclotron resonances. The distri-
bution of the Larmor frequencies is obtained from equa-
tion (24)

PL

(
δωL

ωL0

)
=

θ(δωL)
∆ωL

exp
(
− δωL

∆ωL

)
· (28)

For each spin-state measurement, we obtain a complete
cyclotron resonance and determine the average cyclotron

frequency. For the distribution of the cyclotron frequencies
we assume a Gaussian,

Pc

(
δωc

ωc

)
=

1√
π∆ωc

exp
(
− δω2

c

∆ω2
c

)
, (29)

where ∆ωc is the variance of the cyclotron frequency mea-
surements.

We have not yet taken into account that the cyclotron
frequency ωc is a measure of the average magnetic field
whereas the Larmor frequency ωL0 corresponds to the
magnetic field for vanishing axial energy (Fig. 22). The
shift of the average magnetic field is connected to
the width of the Larmor resonance ∆ωL,

∆B

B0
=

∆ωL

ωL0
· (30)

Taking this into account we get

Pc

(
δωc

ωc

)
=

1√
π∆ωc

exp

(
− (δωc − ∆ωL

ωL0
ωc)2

∆ω2
c

)
· (31)

Shifts δωL = ω′
L −ωL0 of the Larmor frequency and of the

cyclotron frequency (δωc = ω′
c − (ωc0 +∆ωc)) enter in the

following way into the determination of ωL/ωc:

δ(ωL/ωc)
ωL/ωc

==
1

(ωL/ωc)

(
δωL

ωL
− δωc

ωc

)
· (32)

Inserting the distributions for ωL and ωc into equation (32)
gives the probability to obtain a spin flip at the difference
δ(ωL/ωc) from the “true” value of ωL/ωc,

P

�
δ(ωL/ωc)

ωL/ωc

�
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After integration we get

P

(
δ(ωL/ωc)
ωL/ωc

)
=

ωL0

2δωL
exp

(
−1 +

δω2
c

ω2
c

4ω2
L0

δω2
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− ω2
L0

δω2
L
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ω2
c

δω2
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− 1
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.

(34)
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Here, erf(x) denotes the error function, defined as

erf(x) ≡ 2√
π

x∫
0

e−t2 dt. (35)

This lineshape is determined by the magnetic field inho-
mogeneity through δωL/ωL0 and by the uncertainty of the
cyclotron frequency measurements δωc/ωc. The asymme-
try of the lineshape is given by the ratio δωL/δωc. One
important observation is that the expectation value of
equation (34) is always zero. This means that an ωL/ωc

extracted by any symmetrical fit function will not deviate
much from the correct value.

We have not taken into account any effect of saturation
on the theoretical lineshape. It arises from the fact that
we can only distinguish between an even or an uneven
number of spin flips. The actually observed rate RO(t) is
related to the true rate R by [24]

RO(t) =
1
2
(
1 − e−2R t

)
. (36)

Obviously the maximal observable spin-flip probability for
the non-coherently driven transition is 50%.

Figure 21 shows a least-squares fitted resonance shape
according to equation (34), taking into account the satu-
ration effects according to equation (36), to the exper-
imentally obtained data of an (ωL/ωc) resonance. The
(ωL/ωc) resonance was obtained by correcting each event
(spin flip or no spin flip) for the corresponding cyclotron
energy according to Section 4.2. For the parameter δωc/ωc

describing the uncertainty in the cyclotron frequency, we
obtain δωc/ωc = 3.13 (13)×10−9, for δωL/ωL characteriz-
ing the magnetic inhomogeneity (B2) we obtain δωL/ωL =
1.64 (18) × 10−9. This value is a factor of 3 smaller than
expected from the measured value B2 = 8 mT/mm2 (see
Sect. 4.1.3). In Figure 21 we also show a fit using a
completely symmetric function (a Gaussian with satu-
ration effects) for comparison. The extracted (ωL/ωc)
differs by less than 1 × 10−10 (all uncertainties given
for (ωL/ωc) are in relative units), indicating that the
extracted (ωL/ωc) values are not very sensitive to the
model. This is expected since the expectation value of
the (ωL/ωc) resonance does not depend on the magnetic
inhomogeneity.

To investigate the theoretical model further, we in-
creased the axial ion energy by applying white noise to
the resonant circuit during the irradiation by microwaves
up to a factor 6 to Tax = 340 K. The obtained (ωL/ωc) res-
onance is shown in Figure 24. At these high axial energies
the lineshape is broadened and it is easier to determine
the applicability of a fitting function. A simple Gaussian
(solid line) does not fit the data well, in contrast to the fit
function given by equation (34) (dashed line). However,
both extracted values for (ωL/ωc) differ only by 1 part
in 10−9. We checked also whether the extracted values for
(ωL/ωc) depend on the axial energy (Fig. 25). We observed
no significant dependence, as expected from the smallness
of B2 in the precision trap.

Fig. 24. (ωL/ωc) resonance at an axial temperature of 340 K.
The solid line is a fit using a Gaussian inserted into equa-
tion (36). It yields ωL/ωc = 4376.210 500 2 (46). The dashed
line is a fit according to equations (34) and (36) and yields
ωL/ωc = 4376.210 508 3 (38).

Fig. 25. Extrapolation of (ωL/ωc) to zero axial energy. The
slope is consistent with zero.

4.1.3 Measurements of the magnetic field inhomogeneity

A determination of the residual inhomogeneity of the mag-
netic field in the precision trap, mainly caused by the
nickel ring electrode in the analysis trap, is crucial for
a proper analysis of the systematic error in our experi-
ment. We use three different methods for determining the
magnetic field inhomogeneities.

– The cyclotron frequency of the ion is measured at
different positions along the z-axis. We shift the ion
along the z-axis by applying an additional electric field
gradient to the trapping potential. Measuring the cy-
clotron frequency at different positions yields the spa-
tial magnetic field profile (Fig. 26). We obtain a linear
field gradient B1 of 60.4 (2) µT/mm. For B2 we get
41.5 (50) µT/mm2, however with a large error margin
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Fig. 26. Spatial magnetic field distribution in the precision
trap. From this measurement the linear field gradient B1 can
be extracted. It amounts to 60.4 (2) µT/mm.

arising mainly from the limited knowledge of the elec-
tric field.

– The axial frequency is determined for different cy-
clotron energies. Equation (14) gives the relation be-
tween the cyclotron energy and the axial frequency
shift for a given size of B2. For a given cyclotron energy,
we measure the axial frequency shift in the precision
and the analysis trap. The ratio of the two frequency
shifts equals the ratio of the B2-terms in the precision
and analysis trap. The large B2-term in the analysis
trap is known both from measurement and calcula-
tions to be equal to 10 (1) mT/mm2. We obtain for
the precision trap

B2 = 8.2 (9) µT/mm2. (37)

From equation (14) we get the calibration for the cy-
clotron energy

E+ = 2.18 (24) eV s
∆ωz

2π
· (38)

– The cyclotron frequency is measured as a function of
the axial oscillation amplitude of the ion (Fig. 27).
Using equation (15) we obtain from our measurement
B2 = 7.0 (2.2) µT/mm2, in agreement with equa-
tion (37). The uncertainty is dominated by the deter-
mination of the axial oscillation amplitude.

4.2 Dependence of (ωL/ωc) on the cyclotron energy

For a measurement of the perturbed cyclotron frequency,
the energy in the cyclotron mode has to be raised to about
1 eV in order to get a reasonable signal strength. This
shifts the eigenfrequencies of the axial and perturbed cy-
clotron motions (Eqs. (13) and (15))

ω+ → ω+ − ωz

ω+
∆ωz, (39)

ωz → ωz + ∆ωz. (40)

Fig. 27. Free space cyclotron frequency as a function of the
axial oscillation amplitude. The measurement was performed
by electronically increasing the axial energy by broad band ex-
citation (as explained in Sect. 3.1.2) to a different temperature
and extracting from equation (21) the unperturbed cyclotron
frequency.

Inserting these shifts into equation (21) leads to

∆ωc =
√

(ω+ + ∆ω+)2 + (ωz + ∆ωz)2 + ω2− − ωc

≈
√

ω2
+ − 2ωz ∆ωz + ω2

z + 2ωz ∆ωz + ω2− − ωc

= 0. (41)

Thus to first order the cyclotron frequency is indepen-
dent of the ion’s cyclotron energy. In contrast, the Larmor
frequency changes with the cyclotron energy because the
radius of the cyclotron motion increases with increasing
cyclotron energy and thus the average magnetic field will
be different for a non-vanishing B2 term (Eq. 16),

∆ωL = − ωz

ω2
+

ωL ∆ωz. (42)

To test these relations, we excited the ion to cyclotron en-
ergies between 1 and 50 eV, corresponding to shifts ∆ωz

of the axial frequency between 2π × 0.5 and 2π × 25 Hz.
At this cyclotron energies the perturbed cyclotron and
the axial frequency were measured (Fig. 28). From equa-
tions (14) and (15) we expect a slope of

∆ω+

ω+
= − 1

ω+

ω2
z

ω2
+

∆ωz = −1.6 × 10−9 s × ∆ωz

2π
· (43)

The measured slope of ∆ω+/ω+ = −2.4 (1) × 10−9 s ×
∆ωz/2π is larger than our expectation. This discrepancy
can be attributed to a non-perfect axial symmetric mag-
netic field.
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Fig. 28. The reduced cyclotron frequency as a function of the
cyclotron energy, measured in units of the axial frequency shift
according to equations (15) and (39).

Fig. 29. Extrapolation of (ωL/ωc) to zero cyclotron energy.
The shift ∆(ωL/ωc) is −2.3×10−6E+/eV. This corresponds to
a relative change of the frequency ratio of −1.07×10−9 E+/eV.

From the shifts of the cyclotron and Larmor frequen-
cies we obtain a shifted value for ωL/ωc, (ωL/ωc)s:

∆(ωL/ωc)s ≈ ∂(ωL/ωc)s
∂ωL

∆ωL +
∂(ωL/ωc)s

∂ωc
∆ωc

=
(ωL/ωc)s

ωL
∆ωL − (ωL/ωc)s

ωc
∆ωc

= −(ωL/ωc)s
ωz

ω2
+

∆ωz. (44)

We obtain the final value for ωL/ωc from an extrapolation
of the measured (ωL/ωc)s to vanishing cyclotron energy
(Fig. 29). In order to perform the extrapolation, we
grouped the events (ratios ωmw/ωc) according to the cy-
clotron energy at which they happened, into 4–6 bins. The
plot in Figure 29 shows the result when the data is grouped
into 4 bins. According to equations (42) and (14), we ex-
trapolate linearly to zero energy. The average slope of the

fits to 4, 5, and 6 bins is

∆(ωL/ωc) = −2.3 (3)× 106E+/eV. (45)

The uncertainty here is given by the average uncertainty
of each fit. This slope is consistent with equations (43)
and (44).

As ωL/ωc for vanishing cyclotron energy, we took the
average of the extrapolations for 4, 5, and 6 cyclotron
energy bins. The result is

ωL/ωc = 4376.210 500 2 (18). (46)

The number in parentheses is the mean of the fitting un-
certainties.

4.3 Magnetic field fluctuations

Temporal fluctuations of the magnetic field can be a severe
limitation to the attainable precision. We observe drifts
and fluctuations of the B-field that are typically of the
order of 10−8 during the time interval of one measurement
cycle (20–30 min). In addition, the magnetic field shows
big jumps of about 10−7 when either liquid nitrogen or
helium is filled into the apparatus. Mechanical stress and
changes in the temperature of the baths change the trap
position. Movements of the nickel ring induce currents in
the superconducting coils of the magnet and thus change
the magnetic field. In our case the stability of the magnetic
field is of little importance at our level of accuracy because
we measure the cyclotron and Larmor frequencies at the
same time and field fluctuations cancel to first order. We
have therefore not yet taken any measures to stabilize the
magnetic field [39,40].

4.4 Electric field

Uncertainties in the measured ratio ωL/ωc also arise from
imperfections of the electric field. Anharmonicities in the
trapping potential shift the axial frequency when the axial
temperature of the ion is raised by excitation (Sect. 3.1.2,
Fig. 15). This technique was used to accelerate the ax-
ial frequency measurements both in the precision and in
the analysis trap. For the critical determination of the ax-
ial frequency in the precision trap, we increase the ion’s
axial energy by a factor of 9, corresponding to an ax-
ial temperature of 500 K. By adjusting the tuning ratio
(Sect. 3.1.4) we can reduce the octupole contribution (C4)
to less than 10−5. This corresponds to a maximum relative
uncertainty in the axial frequency measurement of 50 mHz
and in ωL/ωc of 1×10−10. Another imperfection would be
a tilt of the trapping potential axis versus the magnetic
field and a breaking of the axial symmetry (ellipticity).
In equation (21), these imperfection do not enter in first
order [24].

4.5 Image charge

The interaction of a trapped charged particle with the in-
duced image charges was investigated with respect to the
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electron g − 2 experiment on free electrons by Fischbach
et al. in reference [41] and by Boulware et al. in refer-
ence [42]. They conclude that the shift in the cyclotron
frequency of the electron due to the retardation of the in-
teraction is proportional to the classical electron radius
re = e2/2πmec

2 and inversely proportional to the dis-
tance to the electrodes. These shifts have been estimated
in case of the g − 2 experiment [41,42] to amount to less
than 10−12. Replacing e and me by the charge and mass
of hydrogen-like carbon, we conclude that in our case this
shift is smaller by a factor of 50 and is therefore negligible.
An intuitive argument for this fact is that the wavelength
for excitation of the ion’s cyclotron motion is 12 m, much
larger than the trap-cavity size.

This argument, however, is only valid for the electric
field component perpendicular to the direction from the
ion to the electrode surfaces. As shown both experimen-
tally and theoretically by van Dyck et al. [43], the longi-
tudinal part of the self-induced electric field can shift the
eigenfrequencies of ions substantially. They modeled their
hyperbolic trap by a spherical cavity. Recently Porto [44]
calculated the image charge shifts for arbitrary axially
symmetric cavities.

The Coulomb force in the cylindrical trap between the
ion (at rest) and the induced image charge in our cylin-
drical trap of radius r0 is

F(r) =
q2 r0/r

4πε0|r − r2
0/r|2 êr ≈ q2

4πε0r3
0

r. (47)

In the plane perpendicular to the z-axis this is the same
force as obtained from the spherical model [43]. There is,
however, no force at all in the z-direction because our trap
is translationally invariant along the z-axis (the bound-
aries of the cavity in this direction are far away compared
to the radius of the cavity). Therefore the axial frequency
is not affected at all by the image-charge interaction. For
the motions in the radial plane, the attractive force in-
creases the magnetron frequency by

∆ω− ≈ ω2
z,v

2ωc
− ω2

z

2ωc
= +

q2

4πε0mr3
0 ωc

· (48)

For the perturbed cyclotron frequency we obtain a
reduction,

∆ω+ ≈
[
ωc −

ω2
z,v

2ωc

]
−
[
ωc − ω2

z

2ωc

]
≈ − q2

4πε0mr3
0 ωc

·
(49)

From equation (21), for the unperturbed cyclotron fre-
quency we have

∆ωc

ωc
=
(
−ω+

ωc
+

ω−
ωc

)
q2

4πε0m r3
0 ω2

c

· (50)

This shifts the cyclotron frequency downwards by
2.92 (24) × 10−10 in our case. The error is deduced
by assuming a maximum motional cyclotron amplitude
of 100 µm of the ion, which introduces a corresponding
variation in the distance r0 between the ion and the trap
electrodes.

4.6 Special relativity

At the level of 10−9, to which we measure our frequen-
cies, we may have to account for relativistic effects in
spite of the low motional energies. The following discus-
sion, however, will show that they can be neglected for
the (ωL/ωc) resonance, because the Larmor and cyclotron
frequencies are shifted by almost the same amount. Rela-
tivistically, the cyclotron frequency can be written

ωc(γ) =
q

γm
Bz =

1
γ

ωc(γ = 1). (51)

Here

γ = 1/
√

1 − v2/c2 (52)

describes the change of the magnetic field due to the
coordinate transformation into the center-of-mass system
of the ion. This is a pure electrodynamic effect. The
transformation of the Larmor precision frequency ωL is
more complicated. We follow Mendlowitz and Case [45]
(see also Refs. [46,47]) and distinguish two cases.
1. Motion parallel to the magnetic field:

ωL(γ) = (1 + a)ωe
c(γ) =

1
γ

ωL(γ = 1). (53)

Here a = g/2 − 1 denotes the anomaly of the mag-
netic moment of the electron. Comparison with equa-
tion (51) shows that the axial motion of the ion shifts
both the Larmor precession and the cyclotron fre-
quency by the same amount. Therefore the ratio does
not depend on the axial energy.

2. Motion perpendicular to the magnetic field:

ωL(γ) = (1 + γa)ωe
c(γ)

=
1
γ

ωL(γ = 1) +
(

1 − 1
γ

)
aωL(γ = 1)

=
1
γ

ωL(γ = 1) +
v2

2c2
aωL(γ = 1). (54)

Comparison with equation (51) shows that here the
transformation behaviour is different for both frequen-
cies. The anomaly a is about 10−3 and therefore the
difference in the transformation behaviour is small.

During the measurement, the ion’s cyclotron energy
is raised to about 1–5 eV. The corresponding relativistic
corrections of ωL/ωc are of the order of 10−12 and are
therefore negligible.

4.7 Other systematic uncertainties

Here we briefly consider other possible sources of system-
atic errors.
– Finite magnetron motion

Similar to the cyclotron motion, there is also a
magnetic moment associated with the magnetron
motion. In an inhomogeneous magnetic field, the cor-
responding additional force gives rise to modifications
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of equation (9). But due to the low frequency, the
resulting magnetic moment is very small. Since the
magnetron radius is of the same order as the cyclotron
radius (see Tab. 2) is orbital magnetic moment is
smaller by the ratio of frequencies (10−3). From the
measured dependence an the cyclotron energy we
calculate the relative corrections to ωL/ωc to less
10−11 for the magnetron motion.

– Microwave field
Inside of our cavity, the microwave field forms a
standing wave with a periodicity of 1.5 mm. Since the
ion amplitudes are in the range of 100 µm, the inten-
sity varies by about 3%. This causes a slightly higher
spin-flip probability at positions of high microwave
intensity. Together with the magnetic field gradient
of 60 µT/mm (corresponding to relative gradient
of 1.5 × 10−6) this would lead to a systematic shift
for ωL/ωc of 0.03 × 1.5 × 10−6 ≈ 5 × 10−8. However,
the spin-flip rate is much smaller than the oscillation
frequencies so that the spin flips occur on a time
scale long compared to the oscillation periods and
thus the effect of the inhomogeneous microwave field
is strongly reduced. Because of the geometry of the
microwave field, we would expect the largest effect
from the axial motion, which can be estimated to be
less than 10−14, assuming a coherence time of 1 s
(which actually might even be substantially longer
and thus reducing the effect even more).

– Quartz oscillators
For the experiment, all synthesizers were locked in a
chain to a 10 MHz signal of an atomic clock. However,
it was not possible to lock our Fast-Fourier-transform
(FFT) analyzer which measures the cyclotron fre-
quency mixed down from 24 MHz to 1.5 kHz.
Therefore we corrected the FFT data for the mea-
sured deviation of its oscillator from the clock signal.
Assuming a (moderate) stability of 2 × 10−6 of the
FFT oscillator we obtain a final relative contribution
of 1 × 10−10 to the uncertainty in ωL/ωc.

– Grounding
A small correction also arises from an observed change
in the grounding potential when we measure the ax-
ial and the cyclotron frequency. The change of the
ground of about 1 µV is induced by control commands
sent by the computer over the GPIB-interface. The
axial frequency is shifted during its measurement by
about 50 mHz as compared to its value while the
cyclotron frequency measurement takes place. The
fractional shift for ωc from equation (21) and corre-
sponding for ωL/ωc is 7 × 10−11. The uncertainty is
conservatively estimated to 4 × 10−4. This leads to a
fractional shift of 7×10−11 for ωc in and therefore also
for ωL/ωc.

5 Final result

The quantity measured in our experiment is the ratio of
the Larmor frequency of the electron bound in 12C5+ and

the cyclotron frequency of the 12C5+-ion. The result after
all corrections (Tab. 4) and extrapolations (Sects. 4.2 and
4.1.2) is

ωL/ωc(C5+) = 4 376.210 498 9 (19) (13). (55)

The first number in parentheses refers to the statistical
uncertainty resulting from the extrapolations and the sec-
ond one represents the quadratically summed systematic
uncertainties (see Tab. 3).

Applying the ratio of cyclotron frequencies for the
electron and 12C5+ (Eq. (5)) derived from measure-
ments by van Dyck et al. [17,18] (6me/M12C6+ =
0.000 274 365 185 89) (58) and using equation (4), we ob-
tain the gJ factor of the electron bound in 12C5+

g(C5+) = 2.001 041 596 (5). (56)

This is the most precise determination of any atomic
magnetic moment so far. It also accurately quantifies for
the first time experimentally the effects of bound-state
QED on a magnetic moment. Our result is in good agree-
ment with the theoretical calculations from the groups in
St. Petersburg [15,48] and Göteborg [2,49] and verifies
the bound-state-QED contributions to about 1%. As was
shown in [14], it even allows for an independent determi-
nation of the mass of the electron.

Future prospects

Currently the accuracy to which ωL/ωc can be determined
is limited mainly by magnetic field inhomogeneities. They
lead both to systematic and statistical uncertainties. The
main part of the systematic uncertainty is the asymmetry
in the lineshape (Sect. 4.1.2) and the energy dependence
of the cyclotron frequency (Sect. 4.2). The statistical un-
certainty is mainly determined by the number of observed
spin flips and the width of the line. All of the uncertain-
ties caused by the magnetic inhomogeneity add to the
most significant contributions of the total error budget.
Therefore we plan to improve the spatial homogeneity by
tuning the currents in the shim coils of the magnet. The
tuning can be monitored by the methods described in Sec-
tion 4.1.3. It should be possible to reduce the quadratic
part of the B-field, characterized by B2, by about a factor
of 10 compared to its present value. As a consequence, the
resonance would be narrower and the remaining asymme-
try would be smaller. Recently we have stabilized the he-
lium pressures in the magnet and apparatus dewars. The
constant pressure reduces temperature fluctuations in the
coil material and thus leads to a more stable flux density
of the magnetic field [40,50].

It is of equal importance to reduce the axial tempera-
ture from 60 K to that of the environment at 4 K. The cor-
responding reduction in motional amplitude would lead to
a smaller linewidth, too. It is, however, difficult to locate
the source of additional noise since our electronic circuits
are not accessible while operating at 4 K.

After improving the homogeneity of the magnetic field,
the remaining statistical uncertainty would be dominated
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by axial-frequency fluctuations. Here the limitation is not
the statistical noise in the measurement signal, but the
electric field fluctuations in the µV-range. These could be
reduced by improving the stability of our voltage source.

We point out that our method to determine the g fac-
tor of the bound electron can be applied to almost any
atomic system without reduction in the expected accuracy
provided masses are known well enough. For hydrogen like
ions with higher nuclear charge the axial frequency change
connected with a spin-flip will be smaller. This has to be
compensated by a larger magnetic field inhomogeneity in
the analysis trap to make this change observable [51]. Even
measurements of the proton and of nuclear magnetic mo-
ments are imaginable [52]. Extension of our measurements
to other ions requires a precise knowledge of their atomic
masses (or the ratio of the electron and the ion cyclotron
frequencies). For many ions such accurate mass measure-
ments (∆m/m ∼ 10−10) have already been carried out
[17,53,54] and thus are a promising base for future exper-
iments at our setup.
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